

AGRUPAMENTO DE ESCOLAS DE OLIVEIRA DO BAIRRO

AEOB.

DGEstE - DSRCentro

Código 160568

Protocolo Experimental

Nome:		Classificação:	
N.º:	Turma:	Data: / / 20	
Enc. de Educação:			Professora:

Lê com atenção o Protocolo Experimental e... Bom trabalho!!!

 \odot

I

Tema: Extracção e separação de pigmentos fotossintéticos

Finalidade: Fazer a análise cromatográfica do extrato de folhas verdes.

Problema: Que pigmentos fotossintéticos existem nos cloroplastos?

Objectivos: Conhecer a localização dos pigmentos fotossintéticos na célula;

Separar os diferentes pigmentos fotossintéticos;

Identificar através da cor os pigmentos fotossintéticos separados.

1. Informação: A fotossíntese é um processo que depende da luz que é captada por moléculas orgânicas designadas por pigmentos. Os pigmentos fotossintéticos que se encontram nas plantas são as clorofilas a e b, respectivamente de cor verde intensa e verde-amarelada, e os carotenóides que incluem os carotenos e xantofilas, respectivamente de cor laranja e amarela.

A cromatografia sobre papel baseia-se no princípio da absorção. O solvente sobe por capilaridade no papel e arrasta os diferentes pigmentos ficando estes dispostos, da parte inferior para a parte superior, na seguinte ordem: clorofila b, clorofila a, xantofilas e carotenos.

2. Termos/Conceitos

Cloroplastos Folha do espinafre Pigmentos fotossintéticos Células vegetais Oxigénio Fotossíntese

3. Material a utilizar na atividade experimental:

Descrição	Quantidade
Folhas de espinafre	50g
Tesoura	1
Almofariz com pilão	1
Areia fina	20g
Álcool a 90%	50ml
Vareta de vidro	1
Gobelé	1
Funil de vidro	1
Papel de filtro	2
Placa de Petri	1

4. Procedimento experimental

A-Corta as folhas, de espinafre, em pedaços para dentro do almofariz

B – Junta os 20g de areia (que facilitará a trituração).

C – Macera com o pilão.

D – Adiciona, progressivamente, os 50ml de álcool (solvente orgânico).

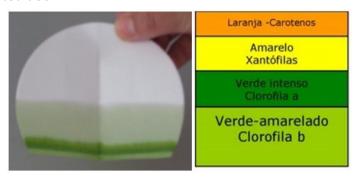
E – Agita com a vareta de vidro, até obteres uma pasta verde escura.

F – Filtra o preparado, com a ajuda de um funil de vidro e um papel de filtro, para um gobelé – obténs a solução de clorofila bruta.

G – Deita fora os resíduos sólidos e coloca o filtrado na placa de Petri (solução de clorofila bruta).

H – Coloca, no filtrado, um papel de filtro dobrado.

 I – Aguarda cerca de 15 minutos, observa o papel de filtro e regista as alterações que observas.


5. Resultados:

Representa num esquema os resultados obtidos.

6. Discussão dos resultados:

6.1. Identifica, no esquema que fizeste, os diferentes pigmentos fotossintéticos.

NOTA: A figura seguinte pode ajudar-te na identificação dos diferentes pigmentos fotossintéticos

6.2. Procura explicar a razão de:

6.2.1. Ter triturado as folhas.

Destruição do tecido vegetal.

6.2.2. Ter adicionado o álcool.

O álcool permite a extracção dos pigmentos e a sua dissolução no álcool.

6.3. Procura explicar as diferentes bandas de diferentes cores

Quando se introduz o papel filtro na solução de clorofila bruta, o solvente sobe por capilaridade, transportando os pigmentos em função do seu grau de solubilidade no solvente. Esses pigmentos vão ficando depositados no papel de filtro a diferentes níveis por ordem crescente do seu grau de solubilidade. Ao fim de algum tempo conseguem observar-se bandas de diferentes cores que correspondem aos diferentes pigmentos constituintes da clorofila bruta.

6.4. Refere a principal função dos pigmentos fotossintéticos

Absorção da energia luminosa.

7. Conclusão

A clorofila não é o único pigmento fotossintético presente nos cloroplastos.

Existem diferentes pigmentos nas células vegetais utilizadas na experiência (clorofila a, b e carotenóides).

FIM